Ten Years of Measurements of Tropical Upper-Tropospheric Water Vapor by MOZAIC. Part I: Climatology, Variability, Transport, and Relation to Deep Convection
نویسندگان
چکیده
Ten years (1994–2004) of measurements of tropical upper-tropospheric water vapor (UTWV) by the Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) are investigated over three regions—the tropical Atlantic, tropical Africa, and the Asian monsoon region—to determine the UTWV climatology and variability on multiple scales and to understand them in relation to moisture transport and deep convection. The seasonal migration of upper-tropospheric humidity (UTH) keeps pace with that of the ITCZ, indicating the convective influence on UTH distribution. Some significant regional differences are identified with the tropical Africa and the Asian monsoon regions being moister than the tropical Atlantic. UTH generally increases with height by 10%–20% relative humidity with respect to ice (RHi) from about 300 to 200 hPa, and the differences are larger in the deep Tropics than in the subtropics. The probability density functions of tropical UTH are often bimodal. The two modes stay rather constant; differences in the mean value are largely due to the variations in the proportion of the two modes as opposed to changes in the modes themselves. In the deep Tropics, the moisture level frequently reaches ice supersaturation, the most notable case being the near-equatorial Asian monsoon region during the wet season when ice supersaturation is observed 46% of the time. Interannual variations are observed in association with the 1997–98 ENSO event. A warming of about 1–2 K is observed for all three regions equatorward of roughly 15°. Specific humidity also increases somewhat for the tropical Atlantic and tropical Africa, but the increase in temperature outweighs the increase in specific humidity such that RH decreases by 5%–15% RHi. In addition to the ENSO-related variation, MOZAIC also sees increases in both RH and specific humidity over tropical Africa from 2000 onward. Moisture fluxes are computed from MOZAIC data and decomposed into contributions from the mean circulation and from eddies. The flux divergence, which represents the moisture source/sink from horizontal transport, is also estimated. Finally, the MOZAIC climatology and variability are revisited in relation to deep convection obtained from the International Satellite Cloud Climatology Project (ISCCP).
منابع مشابه
Ten Years of Measurements of Tropical Upper-Tropospheric Water Vapor by MOZAIC. Part II: Assessing the ECMWF Humidity Analysis
In a recent publication (Part I), the authors introduced a data source—Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC)—for monitoring and studying upper-tropospheric water vapor (UTWV) and analyzed 10 yr (1994–2004) of MOZAIC measurements of tropical UTWV in its climatology, variability, transport, and relation to deep convection. In this study (Part II), MOZAIC is u...
متن کاملThe influence of convective outflow on water vapor mixing ratios in the tropical upper troposphere An analysis based on UARS MLS measurements
The source of increased water vapor mixing raregions of convective outflow. These studies dealt with varitios over the central and eastern tropical Pacific region during ations in relative humidity over a broad region of the tropthe 1992 E1 Nifio event is examined using measurements of ical upper troposphere (i.e., 200-500 hPa). Presently, it is upper tropospheric water vapor provided by the Mi...
متن کاملInfluences of ENSO SST Anomalies and Winter Storm Tracks on the Interannual Variability of Upper-Troposphere Water Vapor over the Northern Hemisphere Extratropics
This study examines the interannual variability of winter upper-troposphere water vapor over the Northern Hemisphere using the National Aeronautics and Space Administration Water Vapor Project, the International Satellite Cloud Climatology Project data, and the European Centre for Medium-Range Weather Forecasting reanalysis. The El Niño–Southern Oscillation related tropical sea surface temperat...
متن کاملComparison of Cirrus Cloud Radiative Properties and Dynamical Processes at Two Atmospheric Radiation Measurement Sites in the Tropical Western Pacific
Upper tropospheric humidity plays an important role in the formation and maintenance of tropical cirrus clouds. Deep convection is crucial for the transport of water vapor from the boundary layer to the upper troposphere and is responsible for the formation of anvil cirrus that can spread horizontally over considerable distances and persist for several hours. In addition, recent studies have li...
متن کاملA statistical analysis of the influence of deep convection on water vapor variability in the tropical upper troposphere
The factors that control the influence of deep convective detrainment on water vapor in the tropical upper troposphere are examined using observations from multiple satellites in conjunction with a trajectory model. Deep convection is confirmed to act primarily as a moisture source to the upper troposphere, modulated by the ambient relative humidity (RH). Convective detrainment provides strong ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007